SYNTHESIS OF THE TETRASACCHARIDE REPEATING UNIT OF THE O-SPECIFIC POLYSACCHARIDE FROM SALMONELLA MUENSTER AND SALMONELLA MINNEAPOLIS.

N. K. KOCHETKOV,* V. I. TORGOV, N. N. MALYSHEVA, A. S. SHASHKOV and E. M. KLIMOV

N. D. ZELINSKY Institute of Organic Chemistry, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.

(Received in UK 5 March 1979)

Abstract—The tetrasaccharide β -D-Man-(1→4)- α -L-Rha-(1→3)-D-Gal-(4←1)- α -D-Gic the repeating unit of the O-specific polysaccharide chain of the lipopolysaccharides from Salmonella muenster and S. minneapolis was obtained by glycosylation of benzyl 2,6-di-O-benzyl-4-O-(2,3,4-tri-O-benzyl-6-O-benzyl- α -D-glucopyranosyl)- β -D-galactopyranoside with 3-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl- β -D-mannopyranosyl)- β -L-rhamnopyranose-1,2-(methylorthoacetate), followed by removal of protecting groups. The structure of the synthetic tetrasaccharide was confirmed by methylation analysis, CrO₃-AcOH oxidation and ¹³C-NMR.

The polysaccharide chains of the lipopolysaccharides of gram-negative bacteria which are responsible for Oantigen specificity are block polymers of regular structure, with repeating oligosaccharide units. The structure of O-specific polysaccharides is unique, for each serological group of bacteria securing a high degree of immunological specificity.¹ Moreover, it has been shown quite recently,² that O-specific polysaccharides of different bacteria, possessing identical serological behavior have identical chemical structures.

The synthesis of fragments of O-specific polysaccharides and related structural analogs with subsequent biological and immunochemical study, would undoubtedly be of importance for biochemical, immunochemical and taxonomic studies of gram-negative bacteria. The synthetic programm of this laboratory includes the synthesis of biological repeating units of Ospecific polysaccharides from Salmonella species.

Recently we described the synthesis of repeating units of O-specific polysaccharides from S. anatum³ and S. senftenberg.⁴ Now we report the synthesis of tetrasaccharide repeating unit of the O-specific polysaccharides from S. muenster and S. minneapolis⁵ β -D-Man(1 \rightarrow 4)- α -L-Rha-(1 \rightarrow 3)-D-Gal-(4 \leftarrow 1)- α -D-Glc 1.

The synthesis of tetrasaccharide 1 was carried out by a 2+2 scheme, analogous to that used for the synthesis of tetrasaccharide from S. senftenberg⁴, i.e. through the preparation of the α -D-Glc-(1 \rightarrow 4)-D-Gal fragment, followed by glycosylation of this disaccharide at OH-3 of the galactopyranose residue by an appropriate derivative of the second disaccharide β -D-Man-(1 \rightarrow 4)-L-Rha. The synthesis of the last disaccharide was accomplished earlier by Kochetkov et al.³ A most complicated point of the synthetic scheme was synthesis of a α -D-Glc-(1 \rightarrow 4)-D-Gal derivative bearing free hydroxyl group or appropriate protecting group at C₃ of galactose unit. For construction of α -glycosidic linkage for disaccharide, which also presents some additional difficulties, we tried to use glycosylation of galactose derivative by 6-O-p-nitrobenzoate derivative of glucose,⁶ or glycosylation in the presence of tetraethylammonium bromide (TEAB).⁷ Our first attempts to use for this synthesis selective glycosylation of readily accessible galactopyranose derivative with two free OH-groups at C₃ and C₄ were unsuccessful. In contrast to our previous data

showing on approximately equal reactivity of the C₃ and C₄ hydroxyl groups in benzyl 2,6-di-O-acetyl- β -D-galactopyranoside 2 towards glycosylation with disaccharide bromide,³ the reaction of 2 with 2,3,4-tri-O-benzyl- β -D-glucopyranosyl bromide 4 in the presence of 2,4,6-collidine⁶ gave 1 \rightarrow 3 linked disaccharide as the only product of glycosylation. The replacement of 2 with benzyl 2,6-di-O-benzyl- β -D-galactopyranoside 3 produced the same result. The attempts of glycosylation of 2 or 3 with 2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl bromide 5 in the presence of TEAB⁷ also gave rise to the 1 \rightarrow 3 linked disaccharide as the main product.

It should be noted that our previous experiments³ were conducted in boiling benzene, whereas in present experiments reactions were performed at room temperature. It seems possible that appearence of a portion of 'C conformer of 2 due to shift of conformational equilibrium with increasing temperature may be responsible for enhanced reactivity of OH-4 group under these conditions.

As a result of these experiments the glycosylation of less accessible galactopyranose derivative with a single free OH-group at C-4 remain as the only alternative.

Such a derivative was obtained through selective benzoylation of 3 with 1 mole of benzoyl chloride.

The monobenzoylated product, benzyl 2,6-di-O-benzyl-3-O-benzoyl- β -D-galactopyranoside 6 was obtained after chromatography as a crystalline form in 60% yield. The structure of 6 was confirmed by methylation with CH₂N₂ in the presence of Et₂O·BF₃⁸ followed by removal of benzoate and benzyl groups, reduction with NaBD₄, acetylation and identification of acetate 4-Omethylgalactitol-1-d by GLC-MS.° Glycosylation of 6 with bromide 4 under conditions described in Ref. 6 and with bromide 5 by methods mentioned in Ref. 7 was not successful. Only glycosylation of 6 by bromide 4 in the presence of CF₃SO₃Ag¹⁰ gave the desired disaccharide derivative 7 in 60% yield. (Bromide 4 was used as a glycosylating agent as it may be expected that the presence of p-nitrobenzoyl group at C-6 should increase the stereoselectivity, probably due to 1.6-participation.¹¹ The experience of this work allows to suggest, that this method can be recommended as one of the most convenient routes for α -glucoside synthesis.)

Debenzoylation of 7 gave 8 in high yield, which was converted after hydrogenolysis to α -D-Glc-(1 \rightarrow 4)-D-Gal 10. This disaccharide was found to be homogeneous and differed from α -D-Glc-(1 \rightarrow 3)-D-Gal 11, as shown by ion-exchange chromatography in borate buffer.¹²

The structure of 10 was confirmed by ¹³C NMR spectrum (see Table 1). Selective benzoylation of 8 produced high yield of monobenzoate 9 with free hydroxyl group at position 3 of galactopyranose moiety. Its structure was proved by methylation with CH_2N_2 in the presence of $Et_2O\cdot BF_3$, followed by removal of benzoate and benzyl groups, NaBD₄ reduction, hydrolysis and identification of acetates of 3-O-methylgalactitol-1-d and glucose in a ratio 1:1 by GLC-MS.

The condensation of two disaccharides to complete synthesis of tetrasaccharide 1 could be achieved most successfully by orthoester method of glycosylation.⁴

Glycosylation of monobenzoate 9 by disaccharide orthoester 12 in the presence of 4Å molecular sieve⁴ gave tetrasaccharide derivative 13 with 35% yield. PMR data of 13 were in accord with the expected structure. After removal of protecting groups from 13 the free tetrasaccharide 1 was obtained.

Ion-exchange chromatography in borate buffer of the tetrasaccharide showed homogeneity of the product. This fact proves anomeric purity of the tetrasaccharide, as ion-exchange chromatography is known to permit separation of isomeric tetrasaccharides with α - and β -rhamnosyl-galactose glycosidic bonds.⁴ Reduction of the tetrasaccharide by NaBH₄ in borate buffer¹³ gave rise to glycosyl-galactitol 16, the latter was also homogeneous in ion-exchange chromatography. Methylation analysis of 16 followed by GLC-MS gave the acetates of 2,3,4,6-tetra-O-methylmannitol, 2,3-di-O-methylrhamnitol, 2,3,4,6-tetra-O-methylglucitol, 1,2,5,6-tetra-O-methylglactitol in a 1:1:1:1-ratio.

When the acetate of the tetrasaccharide 1 was subjected to oxidation with CrO₃ in AcOH,¹⁴ with subsequent hydrolysis and sugar analysis, only the mannose residue was destroyed. The result confirms the configuration of β -mannose, α -rhamnose and α -glucose glycosidic lincages. The additional confirmation of the tetrasaccharide structure was obtained by ¹³C NMR spectrum (see Table 1).

The assignments of β -mannopyranose, 4-O-substituted

 α -L-rhamnopyranose and α -glucopyranose ring carbon atom signals were found unequivocally through comparison with ¹³C NMR spectra of the model compounds 10 and 14. The most complicated problem was the assignment of the signals in 3,4-di-O-substituted galactopyranose residue of 1, due to difficulties of identification of the C-3 and C-4 signals in 1 using the disaccharides 10 and 11 spectra only, explained by mutual influence of substituents on chemical shifts of substituted carbon atoms, when galactose residue is simultaneously substituted at C-3 and C-4.

In order to overcome this difficulty 3,4-di-O-methylgalactose 15 has been specially synthesized, and its ¹³C NMR spectrum was recorded and interpreted. It became clear from this spectrum, that signals of carbon atoms, participated in glycosydic bonds in galactopyranose residue of 1, may be arranged as $C_{4\beta} \sim C_{4\alpha} < C_{3\alpha} < C_{3\beta}$ (in the order of increasing of chemical shifts).

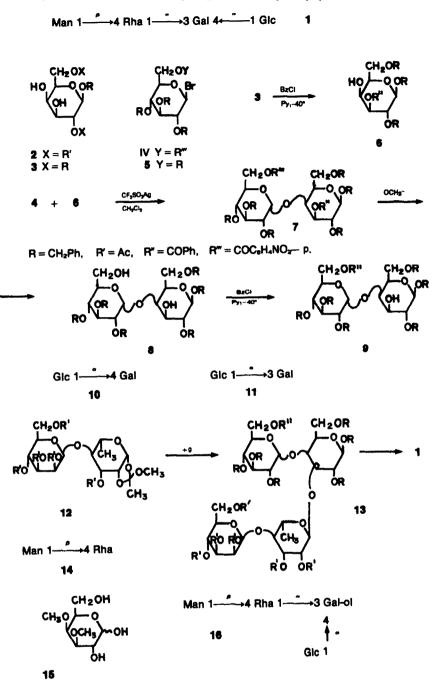
Certainly, the absolute values of chemical shifts C-4 and C-3 carbon atoms of galactopyranose in 1 and 15 will differ due to different α -effects of methylation and glycosylation.¹⁵

Thus, the physico-chemical, and espesially ¹³C NMR data completely corroborate both the structures of the key intermediate compounds, and of the tetrasaccharide 1.

EXPERIMENTAL

Melting points were determined with a Kofler apparatus and are uncorrected. PMR spectra were recorded with a Varian DA-60-IL spectrometer using Me₄Si as internal standard. ¹³C NMR spectra were obtained using a Bruker WP-60 spectrometer with the frequency of 15.05 MHz on carbon. The pulse width was $3 \,\mu \text{sec}$ (30°), the number of transients ~ 10,000 for disaccharides (concentration ~ 80 mg/ml) and 90,000 for tetrasaccharide (concentration ~ 30 mg/ml). Spectra were recorded with a spectral width 3750 Hz and digitization into 8/4K data points. Substances were dissolved in D₂O with CH₃OH as the internal standard (50.15 ppm). All chemical shifts are expressed in δ_{se} GLC-MS was carried out by Varian MAT 111(GNOM) device. Optical rotations were determined with a Perkin-Elmer 141 polarimeter. Solutions were concentrated in vacuo at 40°. Ionexchange chromatography of neutral carbohydrates was carried out with a Technicon carbohydrate analyzer on the columns 13×0.5 cm (A) and 20×0.5 cm (B) of Durrum DA $\times 4$ resin with 0.5 M sodium-borate buffer (pH 8.54) at 55° and 20 ml/h. The orcinol-sulphuric acid reagent was used to monitor separations.

	Glc 1 →3 Gal		Gic 1 →4Gal 10		$\operatorname{Man} 1 \xrightarrow{\beta}{\rightarrow} 4 \operatorname{Rha}_{14}$			$\operatorname{Man} 1 \xrightarrow{\beta} 4 \operatorname{Rha} 1 \xrightarrow{\bullet} 3 \operatorname{Gal} 4 \xrightarrow{\bullet} 1 \operatorname{Gkc}$					3,4-di-O-Me- -Gal 15	
	Glc	Gal	Glc	Gal	Mai	n	R	ha	Man	Rha	Gk	Gal	l	Gal‡
	α	β•	a	β*	β 101.75	α	β	β	α	α	α 93.6	β	α 93.4	β 97.7
c1	96.55	97.7	101.4	97.9	101.75	95.05	94.5	101.8	102.85	101.3 **	93.6	97.8	93.4	97.7
c2	73.0	71.5	73.6†	73.1	71.8	72.2	71.8	71.9	71.5	73.7	69.9	73.3	69 .0	72.4
c3	74.1	78.8	73.951	73.1	74.25	71.2	74.0	74.4	71.5	73.8	78.3	80.75	80.5	84.0
c4	70.7	66.3	70.55	78.6	67.95	80.8	80.4	68.2	79.35	70.5	76.5	76.5	76.7	76.5
c5	72.6	76.1	73.1	76.3	77.3	68.2	72.8	77.5	68.2	73.3	72.8	76.1	71.95	75.9
có	61.65	62.2	61.4	61.4	62.2	18.3	18.3	62.35	18.2	61.5	61.75	61.6	62.2	61.9


Table 1.

*The great predominance of β -anomer in mutarotating mixture.

**The splitting of c-1 signal: α -Rha 1 \rightarrow 3 α -D-Gal 102.7 and α -Rha 1 \rightarrow 3- β D-Gal 102.85.

†Attribution could be reversible.

 $\pm O-Me(4)$ 61.1; -O-Me(3) 58.1(α) and 58.35(β).

TLC was performed on silica gel LSL 5/40 μ (Chemapol), PLC on silica gel containing 5% of gypsum, column chromatography on silica gel L 100/160 μ (Chemapol). Solvent systems for TLC acetone-chloroform 5:95(1), acetone-chloroform 2:98(2), benzene-ethyl acetate 9:1(3), benzene-ethyl acetate 7:3(4), toluene-ethyl acetate 6:4(5). Methylation analysis of oligosaccharides was performed as described in Ref.¹⁶

Benzyl 2,6-di-O-benzyl- β -D-galactopyranoside 2. Benzyl chloride (30 ml) was added dropwise to a colled soln of benzyl 3,4-O-isopropylidene- β -D-galactopyranoside (7.6 g)¹⁷ in 200 ml of dimethylsulfinyl anion (obtained from 200 ml of DMSO and 2.5 g NaH). The mixture was kept overnight at r.t., then diluted with 200 ml of CHCl₃ and washed with H₂O (5 × 500 ml), concentrated and DMSO removed *in vacuo* (1 mm, 100°). The residue (homogeneous in system 1) was dissolved in 150 ml of CHCl₃ containing 10% of CF₃COOH (v/v), and kept for 70 min at r.t. The soln was evaporated, CF₃COOH removed by co-evaporation with toluene. Crystallysation of the resulting product from benzene-

light petroleum ether gave 8.77 g of 3 (30%), m.p. 108-109° $[\alpha]_{20}^{20} - 17.2^{\circ}$ (c2 CHCl₃), Calc. for: $C_{27}H_{30}O_6$: C, 72.0; H, 6.7. Found: C, 71.9; H, 6.7%.

Benzyl 2,6-di- \overline{O} -benzyl-3-O-benzyl- β -D-galactopyranoside 6 Benzyl chloride (0.6 ml) was added dropwise to a cooled stirred soln (-40°) of 3 (2 g) in 50 ml of pyridine (distilled over CaH₂). The solution was stirred for 60 min at -40°, and kept overnight at -5°. Pyridine was evaporated, the residue dissolved in 100 ml of CHCl₃. The soln was washed with H₂O (3 × 200 ml), evaporated, and column chromatography of the residue (benzene \rightarrow ether) gave 1.5 g of 6 (60%) R₂ 0.8 (system 1), m.p. 91-92° (benzene- \rightarrow ether) gave 1.5 g of 6 (60%) R₂ 0.8 (system 1), m.p. 91-92° (benzene-light petroleum ether), [α] β + 48° (c3, CHCl₃), Calc. for C₃₄H₃₄O₇: C, 72.8; H, 6.15 Found: 72.85; H, 6.16% Methylation of 6 by CH₂N₂, followed by hydrogenolysis, NaBD-reduction and acetylation gave the acetate of 4-O-methylgalactitol-1-d identified by GLC-MS.

3-O- α -D-Glucopyranosyl-D-galactopyranose 11. The soln of 2.3.4 - tri - O - benzyl - 6 - O - p - nitrobenzoyl - β - D - glucopyranosyl bromide (4, 2.0 g)¹⁸ and benzyl 2,6-di-O-acetyl- β -

D-glactopyranoside (2, 0.8 g)¹⁷ in CH₃NO₂ (12 ml) and 2,4,6-collidine (4 ml) was kept at r.t. for 72 h with exculsion of moisture. The soln was diluted with 100 ml of CHCl₃, washed with H₂O (3 × 200 ml), 2 M AcOH (2 × 100 ml), and evaporated. PLC of the residue (system 2) gave 500 mg of benzyl 2,6 - di - O - acetyl - 3 -O - (2,3,4 - tri - O - benzyl - 6O - p - nitrobenzoyl - α - D glucopyranosyl) - β - D - galactopyranoside, 25%, R_f 0.4 (system 2), m.p. 137-138° (EtOH), $[\alpha]_1^2 = 39°$ (c2, CHCl₃). Calc. for $C_{31}H_{51}O_{16}N$: C, 65.8; H, 5.5; N, 1.5. Found: C, 66.0; H, 5.4; N, 1.5% Methylation analysis gave acetate of 2,4,6-tri-O-methylgalactitol, identified by GLC.

A methanolic soln of the disaccharide derivative was deacylated with 2 M methanolic sodium methylate, and then deionized with KU-2(H⁺) resin, filtered, and concentrated. The residue was debenzylated in EtOH over 10% palladium-on-charcoal to give 130 mg of 11. Ion-exchange chromatography in borate buffer shows 11 to be homogeneous with R, 100 min (column B), $[\alpha]_D^{20} + 105^{\circ}$ (c9 H₂O). ¹³C NMR spectrum, see Table 1.

Benzyl 2,6 - di - O - benzyl - 3 - O - benzoyl - 4 - O - (2,3,4 - tri - O - p-nitrobenzoyl- α -D-glucopyranosyl)- β -D-galactopyranoside 7. Solution of bromide 4(1 g) in CH₂Cl₂(20 ml, distilled over P₄O₁₀) was added dropwise during 5 min in the darkness to the stirred soln of 6 (600 mg), CF₃SO₃Ag (500 mg) and tetramethylurea (1 ml) in CH₂Cl₂(20 ml). The mixture was stirred in the darkness for 72 h at r.t. filtered, washed with 2 × 20 ml of H₂O and concentrated. The column chromatography of the residue (toluene-ethylacetate) gave 6 (750 mg, 60%), R_f 0.7 (system 3), $[\alpha]_D^{20} + 87^\circ$ (c2 CHCl₃), syrup. Calc. for C₆₈H₆xO₁₅N: C, 72.0; H, 5.7; N, 1.2. Found: C, 72.1; H, 5.8; N, 1.3%.

Benzyl 2,6-di - O - benzyl - 4 - O - (2,3,4 - tri - O - benzyl - 6 - O - p - nitrobenzoyl - α - D - glucopyranosyl) - β - D - galactopyranoside 8. A methanolic soln of 6 (700 ml) was boiled for 30 min with 2 M methanolic sodium methoxide, then deionized with KU-2 (H⁺) resin, filtered and concentrated, PLC of the residue gave 8 (400 mg 75%), R_f 0.4 (system 4); $[\alpha]_{E}^{B}$ + 43° (c2, CHCl₃), syrup. Calc. for C₃₄H₃₈O₁₁: C, 73.4; H, 6.7 Found: C, 73.0; H, 6.7%.

Benzyl 2,6-di-O-benzyl-4-O-(2,3,4-tri-O-benzyl-6-O-benzoyl-a-D-glucopyranosyl)- β -D-galactopyranoside 9. Benzoyl chloride (0.6 ml) was added to a stirred cooled (-40°) soln of 8 (1.8 g) in pyridine (50 ml, freshly distilled over CaH₂). Solution was stirred for 1 h at -40°, and kept overnight at -5°. Pyridine was evaporated, residue was dissolved in 200 ml of CHCl₃, the solution was washed with 2 × 200 ml of H₂O, and evaporated. Column chromatography of resulting syrup (benzene-ethyl acetate) gave 9, (1.8 g, 90%), R_f 0.8 (system 4), [α] β + 47.5° (c2 CHCl₃) syrup. Calc. for C₆₁H₆₂O₁₂: C, 74.2; H, 6.4. Found: C, 74.5; H, 6.5%.

Methylation of 9 with $CH_2N_2^8$ followed by removal of benzoate and benzyl groups, NaBD₄ reduction, hydrolysis and acetylation gave acetates of glucose and 3-O-methygalactitol-1-*d* identified by GLC-MS..

4-O- α -D-Glucopyranosyl-D-galactopyranose 10. The derivative 8(300 mg) was debenzylated over 10% palladium-on-charcoal to give 10 (80 mg), $[\alpha]_{0}^{20}$ + 74.5° (c8 H₂O). Ion-exchange chromatography in borate buffer shows 10 to be homogenous with *R*, 60 min (column B). ¹³C NMR spectrum, see Table 1.

Benzyl 2,6 - di - O - benzyl - 3 - O - [2,3 - di - O - acetyl - 4 - O - (2,3,4,6 - tetra - O - acetyl - β - D - mannopyranosyl) - α - L rhamnopyranosyl] - 4 - O - (2,3,4 - tri - O - benzyl - 6 - O benzoyl - α - D - glucopyranosyl) - β - D - galactopyranoside 13. 9 (120 mg) was glycosylated as described in Ref. 4 with 1,2 - O methyl - orthoacetyl - 3 - O - acetyl - 4 - O - (2,3,4,6 - tetra - O - acetyl β - D - mannopyranosyl) - β - L - rhamnopyranose (12, 200 mg).⁴ After reaction was finished (control by TLC), 100 ml of CHCl₃ were added, the soln was washed with 3 × 100 ml H₂O, and evaporated. PLC of the residue gave 13 (100 mg, 35%), $R_{\rm y}$ 0.55 (system 5), $[\alpha]_{\rm P}^{\rm H}$ + 15.5° (c2, CHCl₃), syrup. Calc, for C₈₅H₈₄O₂₇: C, 80.0; H, 4.95. Found: C, 80.0; H, 5.0%. PMR data (CCl₄): 8.0-7.0 (34 H aromatic), 2.0(18 H O-Ac), 1,3(d, 3 H, J = 5 Hz, rhamnose C-Me).

3-0-[4-O- $(\beta$ -D-mannopyranosyl)- α -L-rhamnopyranosyl]-4-O-(α - D - glucopyranosyl) - D - galactopyranose 1. A methanolic solution 13 (60 mg) was deacylated with 2 M methanolic sodium methoxide, and then deionized with KU-2(H⁺) resin filtered and concentrated. The product was debenzylated in 20 ml of EtOH over 10% palladium-on-charcoal to give 1, (30 mg, 85%), $[\alpha]_{B}^{20}$ + 35.1° (c3, H₂O). Ion-exchange chromatography in borate buffer shows 1 to be homogeneous with R_t 50 min (column A). PC showed a single spot with R_{Gic} 0.28 (BuOH-Py-H₂O 6:4:3, Filtrak FN-11). 13C NMR spectrum, see Table 1. Sodium borohydride (20 mg) was added to the solution of 1 (5 mg) and H₃BO₃ (20 mg) in 2 ml of H₂O. Solution was kept for 16 h at r.t., then was deionized with KU-2(H⁺) resin, fitered and co-evaporated with methanol up to dry. Ion-exchange chromatography in borate buffer showed the obtained glycosyl-galactitol 16 to be homogeneous with R_{f} 207 min (column B). Methylation analysis of 16 gave the acetates of 1,2,5,6-tetra-O-methylgalactitol, 2,3-di-Omethyl-rhamnitol, 2,3,4,6-tetra-O-methylmannitol and 2,3,4,6tetra-O-methylglucitol in 1:1:1:1-molar ratio.

Oxidation of the acetate of tetrasaccharide 1. Tetrasaccharide 1 (1 mg) was acetylated with acetic anhydride, and then oxidized with CrO_3 -AcOH.¹⁴ The product was hydrolysed (2M HCl, 16 h, 100°). Only mannose was destroyed by this procedure.

3-O- β -D-Mannopyranosyl-L-rhamnopyranose 14. Obtained by the method described in Ref. 19; $[\alpha]_0^2 - 46^\circ$ (c2, H₂O).

3,4-Di-O-methylgalactopyranose 15. Obtained by hydrolysis (2 M HCl, 16 h, 100°) of methyl-3,4-di-O-methyl- α -D-galactopyranoside.²⁰

REFERENCES

- ¹B. Lindberg and S. Svensson, In *MTP International Review of Science*, Vol. 7, p. 285, (Edited by G. O. Aspinall), Butterworths, London (1973).
- ²B. A. Dmitriev, V. L. Lvov, N. K. Kochetkov, B. Jann and K. Jann, *Eur. J. Biochem.* **64**, 491 (1976); B. A. Dmitriev, Yu. A. Knirel, N. K. Kochetkov, B. Jann and K. Jann, *Ibid.* **79**, 111 (1977).
- ³N. K. Kochetkov, B. A. Dmitriev, O. S. Chizhov, E. M. Klimov, N. N. Malysheva, V. I. Torgov, A. Ya. Cherniak and N. E. Bayramova, *Izv. Akad. Nauk S.S.S.R., Ser. Khim.* 1386 (1974).
- ⁴N. K. Kochetkov, N. N. Malysheva, V. I. Torgov and E. M. Klimov, *Carbohydr. Res.* 54, 269 (1977).
- ⁵O. Lüderitz, O. Westphal, A. M. Staub and H. Nikaido, In Microbial Toxins, Vol. 4, p. 145. (Edited by G. Weinbaum, S. Kadis and S. J. Ajl) Academic Press, New York (1971).
- ⁶S. Koto, T. Uchida and S. Zen, Bull. Chem. Soc. Japan 46, 2520 (1973).
- ⁷R. U. Lemieux, K. B. Hendriks and R. V. Stick, J. Am. Chem. Soc. 97, 4056 (1975).
- ⁸J. O. Deferari, E. G. Gros and I. M. E. Thiel, In *Methods in Carbohydrate Chemistry*, Vol. 6, pp. 365-367. (Edited by R. L. Whilsler and J. N. BeMiller) Academic Press, New York (1972).
- ⁹H. Bjorndal, B. Lindberg and S. Svensson, *Carbohydr. Res.* 5, 433 (1967).
- ¹⁰S. Hanessian and J. Banoub, *Ibid.* 53, C13 (1977).
- ¹¹J. M. Frechet and C. Schuerch, J. Am. Chem. Soc. 94, 604 (1972).
- ¹²V. A. Derevitskay, N. P. Arbatsky and N. K. Kochetkov, Dokl. Akad. Nauk S.S.S.R., 223, 1137 (1975).
- ¹³H. M. Flowers, Carbohydr. Res. 18, 211 (1971).
- ¹⁴J. Hoffman, B. Lindberg and S. Svensson, Acta Chem. Scand. 26, 661 (1972).
- ¹⁵A. S. Shashkov and O. S. Chizhov, *Bioorgan. Chem.* 2 437 (1976).
- ¹⁶P. E. Jansson, L. Kenne, H. Lindgren, B. Lindberg and J. Lönngren, A Practical Guide to the Methylation Analysis of Carbohydrates, University of Stockholm, Chemical Communications, No. 8. (1976).
- ¹⁷H. M. Flowers, Carbohydr. Res. 4, 312 (1967).
- ¹⁰T. Ishikava and H. G. Fletcher, J. Org. Chem. 34, 563 (1969).
- ¹⁹G. M. Bebault and G. G. S. Dutton, *Carbohydr. Res.* 37, 309 (1974).
- ²⁰A. S. Shashkov, A. I. Usov, S. V. Yarotsky and A. V. Rabovsky, *Bioorgan. Chem.* 4, 1489 (1978).